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Five Grand Technical Challenges

Thermal Energy Storage

Industrial Processes — Steel, Concrete, Aluminum, Hydrogen
Low Global Warming Potential (GWP) Refrigerants
Long-Distance Heat Transmission
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Variable Conductance Building Envelopes

Innovations in energy policy, finance and business models
are critical for impact, but not the subject of this talk
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Exajoules (EJ)

Energy is essential for economic growth and quality of human life
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Temperature change
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Defining Dual Challenge of 215t Century

* Providing access to affordable and
secure energy for economic growth
* Reducing greenhouse gas emissions

1000 GtCOz - 70% probability for < 2 °C
40 GtCO,/year - increasing at 1%/yr

20-30 years
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S Gamechangers

Modern Renewables Lithium-lon Batteries Will Likely Make Unconventional Gas is Inexpensive
Produce Most Inexpensive Electric Vehicles Range & Cost and Abundant — Replacing Coal
Electricity, But Intermittent Competitive with Gasoline Cars < 2025
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Estimated U.S. Energy Consumption in 2019: 100.2 Quads National Laboratory
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Five Grand Challenges that have Highest
Opportunity for Impact

1. Thermal Energy Storage
2. Industrial Processes — Steel, Concrete, Aluminum, Hydrogen
3. Low Global Warming Potential (GWP) Refrigerants
: - 10— ' ,
4. Long-Distance Heat Transmission e g’g;;gﬁ,ggge;gggg)/ _
5. Variable Conductance Building Envelopes » |
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A. Henry, RS Prasher, “The prospect of high-temperature solid state
energy conversion to reduce the cost of concentrated solar power,”
Energy & Env Sci 7, 1819 (2014)



Energy Storage Needs

California Daily Electricity Demand

Maximum required storage duration
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Stanford Campus
: Energy System
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ARPA-E DAYS Program
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* High Energy Density, Low-Cost Storage Media
* High Heat Transfer Rate
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Heating with GHG-Free Electricity

INDUCTION HEATING DIELECTRIC HEATING

Dilelectric material
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generator electrode

ELECTRIC ARC HEATING

Current In coll

Electrodes

' ' Arc

DIRECT RESISTANCE HEATING

CaCO3; - Cao + Pure

CH,+20, - 2H,0 Mixed
C +0, > with N,

Induced current
In part

ELECTRON BEAM HEATING

Electron
f gun

LOW-CARBON HEAT SOLUTIONS
FOR HEAVY INDUSTRY: SOURCES,
OPTIONS, AND COSTS TODAY
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GHG-Free Hydrogen for Heating
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How steel is made Electrochemical Iron Production

a 10 14
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\I; y} Iron Ore Electricity Iron Oxygen IE i . 11 2
Roasted ore, F O -5 2 F 3 O Sl 71
coke, limestone e 2U3 +e e+ /9 o I i
> | <41,
Oxygen (0) 5 6 |
xygen (O ) 3 6f 1
° Reducing Agent Electrons o | 40.8
COZ Se pa ratlo n & Ca ptu re Feedstock Concentrates or pure oxides § L i
Electrolyte  Molten oxides (CaO, MgO, etc.) 3 4l ] 0.6
Containment Refractory or frozen ledge g 3 ]
Liquid metal Temperature  Up to 2,000°C g [ 10.4
CO, C:02’ N2 Product Pure metals or alloys % 2t [E{ ] 0.2
75 ft, 230 °C 3F6203 + CO —> 2F6304 + C02 % r J Q
CrgoFejpanode; T = 1565 °C N A .
65ft, 410°C  Fe,0, + CO —> 3FeO + CO, 0 10 ity 400
A. Allanore, L. Yin, D. Sadoway, “A new anode material for oxygen
55ft,525°C  FeO + CO —> Fe + CO, evolution in molten oxide electrolysis,” Nature 497, 353 (2013)

45 ft, 865 °C Cc+Co, —> 2CO

351t, 945 °C CaCO; —> CaO + CO,; C +CO, —> 2CO

Hydrogen Utilization for Heat and Reductant
Fe203 + 3H, = 2Fe + 3H,0

25ft, 1125°C  CaO + Si0, —> CaSiO,; C + CO, —> 2CO
15ft,1300°C C+0, —> CO,

5 ft, 1510 °C

Challenges
* GHG-free H,
* Hydrogen Embrittlement

Molten iron
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Gigaton-Scale GHG-Free Hydrogen at < $2/kg
=
20-200 tons per day H, plants
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'| High-Value Graphitic Carbon
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3. Low Global Warming Pote"nti'al‘(GWP)-Rgfrigerants
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4. Long-Distance Heat TransmlSSIQn W|th L&w Exergy Loss
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Diels-Alder Chemistr
Power Capacity ~ 10s MW ' Istry
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Temperature ~ 100-800 °C

maleic anhydride exo-DA-product

Effective Thermal Conductivity, k ~ 10,000 %
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Dissociative Thermochemidal?
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thermal storage?



5. Variable Thermal Conductance Building Envelopes
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Estimated U.S. Energy Consumption in 2019: 100.2 Quads National Laboratory
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Thermal Energy Storage
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Defining the New Normal - Lessons fr.orrii.'Hlistory

1. Pre-COVID-19 had sustainability challenges on many fronts. COVID-19
has forced us to take a step back.

2. Global economy is in shambles, people are getting sick and some are
dying. Many around the world don’t have the luxury to think about the
future, but we do. Along with this luxury comes the responsibility to
make best use this time. This is a generational responsibility.

3. We (humanity, planet) are all in this together. We need to think and act
as the whole, not just pieces at a time.

4. We need to define what the world ought to be post-COVID-19 — the new
normal - to address the defining dual challenge of the 215t century.
 Global institutions; policy frameworks; governance; businesses;

academia; R&D agenda




